This animation helps explain the geometric interpretation of the sine and cosine functions.
Edit and compile if you like:
% Sine and Cosine functions animation % % Author: % Efraín Soto Apolinar. % http://www.aprendematematicas.org/ % % This animation helps explain the % geometric interpretation of the % sine and cosine functions. % \documentclass[spanish,10pt]{beamer} \usepackage[ansinew]{inputenc} % Language = Spanish % \usepackage{color} \usepackage{tikz} \usepackage{hyperref} \hypersetup{pdfpagemode=FullScreen} \usepackage{ifthen} \usepackage{animate} % \usetheme{Warsaw} \usecolortheme{whale} % % % \newcounter{angle} \setcounter{angle}{0} % \begin{document} % % % \begin{frame}[fragile]{Sine and Cosine functions} \begin{center} \begin{animateinline}[loop, poster = first, controls]{30} % \whiledo{\theangle<359}{ % \begin{tikzpicture} % Axis \draw[thick,->,blue] (-3,0)--(3,0) node[below] {$x$}; % x axis \draw[thick,->,blue] (0,-3)--(0,3) node[left] {$y$}; % y axis \draw[red,thick] (0,0) circle (2.5cm); \node[red,below] at (2.6,0) {1}; \node[red,above] at (0.1,-2.5) {1}; % \draw[ultra thick,cyan] (0,0) -- (0,0 |- \theangle:2.5cm); % UpOn x axis \draw[ultra thick,orange] (0,0) -- (\theangle:2.5cm |- 0,0); % UpOn y axis % \draw[densely dotted,orange] (\theangle:2.5cm) -- (\theangle:2.5cm |- 0,0); % vertical line \draw[densely dotted,cyan] (\theangle:2.5cm) -- (0,0 |- \theangle:2.5cm); % horizontal line \draw[ultra thick,red,->,rotate=\theangle] (0,0) -- (2.5,0); \node[red,orange,right] at (0,-3.5) {\footnotesize$\cos(\theangle^{\mathrm{o}}) = \pgfmathcos{\theangle}\pgfmathresult$}; \node[red,cyan,right] at (0,-3.1) {\footnotesize$\sin(\theangle^{\mathrm{o}}) = \pgfmathsin{\theangle}\pgfmathresult$}; \end{tikzpicture} % \stepcounter{angle} \ifthenelse{\theangle<359}{ \newframe }{ \end{animateinline} } } \end{center} \end{frame} % % % \end{document}
Click to download: sine-and-cosine-functions-animation.tex • sine-and-cosine-functions-animation.pdf
Open in Overleaf: sine-and-cosine-functions-animation.tex