This example shows the solution of Euler's polygon division problem for a heptagon. The problem is to find in how many ways a plane convex polygon of n sides can be divided into triangles. The solution is given by the Catalan number. For a heptagon the number is 42.
Edit and compile if you like:
% Polygon division % Author: Eric Détrez \documentclass{minimal} \usepackage{tikz} \begin{document} % Macro for drawing a heptagon \def\hepta{\draw(A) -- (B) -- (C) -- (D) -- (E) -- (F) -- (G) -- cycle;} % Macro for drawing polygon diagonals. % Example \slice{A/C,C/E,E/G,C/G} \newcommand{\slice}[1]{% \hepta \draw \foreach \x/\y in {#1} {(\x)--(\y)}; } \begin{tikzpicture} % Define the heptagon coordinates \coordinate (A) at (-0.76,1.54); \coordinate (B) at (-0.76,0.69); \coordinate (C) at (-0.10,0.16); \coordinate (D) at (0.73,0.35); \coordinate (E) at (1.1,1.11); \coordinate (F) at (0.73,1.88); \coordinate (G) at (-0.10,2.07); \matrix[column sep=0.8cm,row sep=0.5cm] { \slice{A/C,C/E,E/G,C/G}& \slice{A/C,C/E,E/G,A/E}& \slice{A/C,C/E,A/E,A/F}& \slice{A/C,C/E,C/F,A/F}& \slice{A/C,C/E,C/F,C/G}& \slice{A/C,C/F,D/F,A/F}\\ \slice{A/C,C/F,D/F,C/G}& \slice{A/C,C/G,D/G,D/F}& \slice{A/C,C/G,D/G,E/G}& \slice{A/C,A/D,D/F,A/F}& \slice{A/C,A/D,D/F,D/G}& \slice{A/C,A/D,D/G,E/G}\\ \slice{A/C,A/D,A/E,E/G}& \slice{A/C,A/D,A/E,A/F}& \slice{A/D,B/D,D/F,A/F}& \slice{A/D,B/D,D/F,D/G}& \slice{A/D,B/D,D/G,E/G}& \slice{A/D,B/D,A/E,E/G}\\ \slice{A/D,B/D,A/E,A/F}& \slice{A/E,B/E,B/D,E/G}& \slice{A/E,B/E,B/D,A/F}& \slice{A/E,B/E,C/E,E/G}& \slice{A/E,B/E,C/E,A/F}& \slice{A/F,B/F,B/D,D/F}\\ \slice{A/F,B/F,B/D,B/E}& \slice{A/F,B/F,B/E,C/E}& \slice{A/F,B/F,C/F,C/E}& \slice{A/F,B/F,C/F,D/F}& \slice{B/G,B/D,D/F,B/F}& \slice{B/G,B/D,D/F,D/G}\\ \slice{B/G,B/D,D/G,E/G}& \slice{B/G,B/D,B/E,E/G}& \slice{B/G,B/D,B/E,B/F}& \slice{B/G,B/E,C/E,E/G}& \slice{B/G,B/E,C/E,B/F}& \slice{B/G,B/F,C/F,C/E}\\ \slice{B/G,B/F,C/F,D/F}& \slice{B/G,C/G,C/E,E/G}& \slice{B/G,C/G,C/E,C/F}& \slice{B/G,C/G,C/F,D/F}& \slice{B/G,C/G,D/G,D/F}& \slice{B/G,C/G,D/G,E/G}\\ }; \end{tikzpicture} \end{document}
Click to download: polygon-division.tex • polygon-division.pdf
Open in Overleaf: polygon-division.tex