This is a drawing of a tetrahedron inscibed in a parallelepiped. See the following reference p. 58-63 S 189 to 202
@BOOK{altshiller1935modern,
title = {Modern pure solid geometry},
publisher = {The Macmillan company},
year = {1935},
author = {Altshiller-Court, N.},
address = {New York},
edition = {first},
lccn = {35024297},
url = {http://books.google.ca/books?id=DDYGAQAAIAAJ}
}
Edit and compile if you like:
% Circumscribed Parallelepiped % Author: Axel Pavillet \documentclass[tikz,border=10pt]{standalone} \begin{document} \begin{tikzpicture}[font=\LARGE] % Figure parameters (tta and k needs to have the same sign) % They can be modified at will \def \tta{ -10.00000000000000 } % Defines the first angle of perspective \def \k{ -3.00000000000000 } % Factor for second angle of perspective \def \l{ 6.00000000000000 } % Defines the width of the parallelepiped \def \d{ 5.00000000000000 } % Defines the depth of the parallelepiped \def \h{ 7.00000000000000 } % Defines the heigth of the parallelepiped % The vertices A,B,C,D define the reference plan (vertical) \coordinate (A) at (0,0); \coordinate (B) at ({-\h*sin(\tta)},{\h*cos(\tta)}); \coordinate (C) at ({-\h*sin(\tta)-\d*sin(\k*\tta)}, {\h*cos(\tta)+\d*cos(\k*\tta)}); \coordinate (D) at ({-\d*sin(\k*\tta)},{\d*cos(\k*\tta)}); % The vertices Ap,Bp,Cp,Dp define a plane translated from the % reference plane by the width of the parallelepiped \coordinate (Ap) at (\l,0); \coordinate (Bp) at ({\l-\h*sin(\tta)},{\h*cos(\tta)}); \coordinate (Cp) at ({\l-\h*sin(\tta)-\d*sin(\k*\tta)}, {\h*cos(\tta)+\d*cos(\k*\tta)}); \coordinate (Dp) at ({\l-\d*sin(\k*\tta)},{\d*cos(\k*\tta)}); % Marking the vertices of the tetrahedron (red) % and of the parallelepiped (black) \fill[black] (A) circle [radius=2pt]; \fill[red] (B) circle [radius=2pt]; \fill[black] (C) circle [radius=2pt]; \fill[red] (D) circle [radius=2pt]; \fill[red] (Ap) circle [radius=2pt]; \fill[black] (Bp) circle [radius=2pt]; \fill[red] (Cp) circle [radius=2pt]; \fill[black] (Dp) circle [radius=2pt]; % painting first the three visible faces of the tetrahedron \filldraw[draw=red,bottom color=red!50!black, top color=cyan!50] (B) -- (Cp) -- (D); \filldraw[draw=red,bottom color=red!50!black, top color=cyan!50] (B) -- (D) -- (Ap); \filldraw[draw=red,bottom color=red!50!black, top color=cyan!50] (B) -- (Cp) -- (Ap); % Draw the edges of the tetrahedron \draw[red,-,very thick] (Ap) -- (D) (Ap) -- (B) (Ap) -- (Cp) (B) -- (D) (Cp) -- (D) (B) -- (Cp); % Draw the visible edges of the parallelepiped \draw [-,thin] (B) -- (A) (Ap) -- (Bp) (B) -- (C) (D) -- (C) (A) -- (D) (Ap) -- (A) (Cp) -- (C) (Bp) -- (B) (Bp) -- (Cp); % Draw the hidden edges of the parallelepiped \draw [gray,-,thin] (Dp) -- (Cp); (Dp) -- (D); (Ap) -- (Dp); % Name the vertices (the names are not consistent % with the node name, but it makes the programming easier) \draw (Ap) node [right] {$A$} (Bp) node [right, gray] {$F$} (Cp) node [right] {$D$} (C) node [left,gray] {$E$} (D) node [left] {$B$} (A) node [left,gray] {$G$} (B) node [above left=+5pt] {$C$} (Dp) node [right,gray] {$H$}; % Drawing again vertex $C$, node (B) because it disappeared behind the edges. % Drawing again vertex $H$, node (Dp) because it disappeared behind the edges. \fill[red] (B) circle [radius=2pt]; \fill[gray] (Dp) circle [radius=2pt]; % From the reference and this example one can easily draw % the twin tetrahedron jointly to this one. % Drawing the edges of the twin tetrahedron % switching the p_s: A <-> Ap, etc... \draw[red,-,dashed, thin] (A) -- (Dp) (A) -- (Bp) (A) -- (C) (Bp) -- (Dp) (C) -- (Dp) (Bp) -- (C); \end{tikzpicture} \end{document}
Click to download: parallelepiped.tex • parallelepiped.pdf
Open in Overleaf: parallelepiped.tex