In any triangle, trisector lines intersect in 3 points that are vertices of an equilateral triangle.
Note that this example requires the tkz-2d package.
Edit and compile if you like:
% Morley's triangle % Author : Arnaud Lefebvre (IREM Rouen) % Intersections of trisector lines in any triangle % are vertices of an equilateral triangle \documentclass{article} \usepackage{tikz,tkz-2d} \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{5pt}% \usetikzlibrary{calc,intersections} \pagestyle{empty} \begin{document} \begin{tikzpicture} %---------------------------------------------------- % Coordinates of A, B and C, the triangle vertices %---------------------------------------------------- \coordinate[label=above:$A$] (A) at (5,4); \coordinate[label=left:$B$] (B) at (0,0); \coordinate[label=right:$C$] (C) at (7,0); %---------------------------------------------------- % Lengths of segments [AB], [BC], and [CA] %---------------------------------------------------- \tkzMathLength(B,C) \newlength{\la} \setlength{\la}{\tkzMathLen pt} \setlength{\la}{.01\la} \tkzMathLength(A,C) \newlength{\lb} \setlength{\lb}{\tkzMathLen pt} \setlength{\lb}{.01\lb} \tkzMathLength(A,B) \newlength{\lc} \setlength{\lc}{\tkzMathLen pt} \setlength{\lc}{.01\lc} %---------------------------------------------------- % Computing 1/3 of each angle %---------------------------------------------------- \pgfmathsetmacro{\A}{acos((\la*\la-\lb*\lb-\lc*\lc)/(-2*\lb*\lc))}; \pgfmathsetmacro{\tA}{\A/3}; \pgfmathsetmacro{\B}{acos((\lb*\lb-\la*\la-\lc*\lc)/(-2*\la*\lc))}; \pgfmathsetmacro{\tB}{\B/3}; \pgfmathsetmacro{\C}{acos((\lc*\lc-\lb*\lb-\la*\la)/(-2*\lb*\la))}; \pgfmathsetmacro{\tC}{\C/3}; %---------------------------------------------------- % Computing intersections of trisector lines %---------------------------------------------------- \coordinate (A1) at ($(A)!100*max(\lb,\lc)!\tA:(B)$); \coordinate (A2) at ($(A)!100*max(\lb,\lc)!2*\tA:(B)$); \coordinate (B1) at ($(B)!100*max(\la,\lc)!\tB:(C)$); \coordinate (B2) at ($(B)!100*max(\la,\lc)!2*\tB:(C)$); \coordinate (C1) at ($(C)!100*max(\la,\lb)!\tC:(A)$); \coordinate (C2) at ($(C)!100*max(\la,\lb)!2*\tC:(A)$); %---------------------------------------------------- % Computing coordinates of vertices O, P and Q of % the Morley's triangle %---------------------------------------------------- \coordinate (O) at (intersection of C--C1 and A--A2); \coordinate (P) at (intersection of A--A1 and B--B2); \coordinate (Q) at (intersection of B--B1 and C--C2); %---------------------------------------------------- % Drawing triangles and trisectors %---------------------------------------------------- \tkzMarkAngle[size=1,fillcolor=green!80](B/A/A1) \tkzMarkAngle[size=.9,fillcolor=green!80](A2/A/A1) \tkzMarkAngle[size=.8,fillcolor=green!80](A2/A/C) \tkzMarkAngle[size=1,fillcolor=blue!80](C/B/B1) \tkzMarkAngle[size=.9,fillcolor=blue!80](B2/B/B1) \tkzMarkAngle[size=.8,fillcolor=blue!80](B2/B/A) \tkzMarkAngle[size=1,fillcolor=red!80](A/C/C1) \tkzMarkAngle[size=.9,fillcolor=red!80](C2/C/C1) \tkzMarkAngle[size=.8,fillcolor=red!80](C2/C/B) \draw (A)--(B)--(C)--cycle; \draw[fill=orange, opacity=.4] (O)--node[sloped]{\tiny{//}} (P)--node[sloped]{\tiny{//}} (Q)--node[sloped]{\tiny{//}}(O); \draw (A)--(O) (A)--(P) (B)--(P) (B)--(Q) (C)--(Q) (C)--(O); %---------------------------------------------------- % Caption %---------------------------------------------------- \node[rounded corners, fill=purple!20,anchor=south east] at (3,3) {\begin{minipage}{5cm} \textbf{Morley's triangle}\newline In any triangle, trisector lines intersect in 3 points that are vertices of an equilateral triangle. \end{minipage}}; \end{tikzpicture} \end{document}
Click to download: morleys-triangle.tex • morleys-triangle.pdf
Open in Overleaf: morleys-triangle.tex