What is the relationship between the area of the isosceles right triangle ABC and the area of the lune?
Edit and compile if you like:
% 25/11/2008 % Alain Matthes \documentclass{minimal} \usepackage{tikz} \usetikzlibrary{through,calc} \begin{document} \begin{tikzpicture}[thick] \path[draw] (-4,0) coordinate [label= left:$A$] (A) -- ( 0,4) coordinate [label=above:$C$] (C) -- ( 4,0) coordinate [label=right:$B$] (B) -- cycle; \foreach \point in {A,B,C} \fill [black] (\point) circle (2pt); \draw [color=red] circle(4cm); % The radius of the inner circular arc is equal to the length of BC. % Use the math engine to do the necessary calculations and store the % radius in the \n1 register \draw[color=red,fill=black!20] let \p1 = ($ (B) - (C) $), \n1 = {veclen(\x1,\y1)} in (A) arc (180:360:4cm) arc (-45:-135:\n1); \end{tikzpicture} \end{document}
Click to download: lune-of-hippocrates.tex • lune-of-hippocrates.pdf
Open in Overleaf: lune-of-hippocrates.tex