This is an illustration of linear regression.
This example was written by Henri Menke on TeXwelt.de. http://texwelt.de/wissen/fragen/4912/skizze-zur-illustration-linearer-regression An animated version can be found there in addition.
Edit and compile if you like:
% Linear regression % Author: Henri Menke \documentclass[tikz,border=10pt]{standalone} \usetikzlibrary{arrows,intersections} \begin{document} \begin{tikzpicture}[ thick, >=stealth', dot/.style = { draw, fill = white, circle, inner sep = 0pt, minimum size = 4pt } ] \coordinate (O) at (0,0); \draw[->] (-0.3,0) -- (8,0) coordinate[label = {below:$x$}] (xmax); \draw[->] (0,-0.3) -- (0,5) coordinate[label = {right:$f(x)$}] (ymax); \path[name path=x] (0.3,0.5) -- (6.7,4.7); \path[name path=y] plot[smooth] coordinates {(-0.3,2) (2,1.5) (4,2.8) (6,5)}; \scope[name intersections = {of = x and y, name = i}] \fill[gray!20] (i-1) -- (i-2 |- i-1) -- (i-2) -- cycle; \draw (0.3,0.5) -- (6.7,4.7) node[pos=0.8, below right] {Sekante}; \draw[red] plot[smooth] coordinates {(-0.3,2) (2,1.5) (4,2.8) (6,5)}; \draw (i-1) node[dot, label = {above:$P$}] (i-1) {} -- node[left] {$f(x_0)$} (i-1 |- O) node[dot, label = {below:$x_0$}] {}; \path (i-2) node[dot, label = {above:$Q$}] (i-2) {} -- (i-2 |- i-1) node[dot] (i-12) {}; \draw (i-12) -- (i-12 |- O) node[dot, label = {below:$x_0 + \varepsilon$}] {}; \draw[blue, <->] (i-2) -- node[right] {$f(x_0 + \varepsilon) - f(x_0)$} (i-12); \draw[blue, <->] (i-1) -- node[below] {$\varepsilon$} (i-12); \path (i-1 |- O) -- node[below] {$\varepsilon$} (i-2 |- O); \draw[gray] (i-2) -- (i-2 -| xmax); \draw[gray, <->] ([xshift = -0.5cm]i-2 -| xmax) -- node[fill = white] {$f(x_0 + \varepsilon)$} ([xshift = -0.5cm]xmax); \endscope \end{tikzpicture} \end{document}
Click to download: linear-regression.tex • linear-regression.pdf
Open in Overleaf: linear-regression.tex