The junction here is drawn with photon injection condition like in a solar cell, so we use the quasi-fermi levels.
Edit and compile if you like:
% Semiconductor pn junction diagram % Author: Erwann Fourmond \documentclass[tikz]{standalone} \usepackage{tikz} \usetikzlibrary{patterns,arrows,calc,decorations.pathmorphing} % Modified \textcircled macro \renewcommand*\textcircled[1]{\tikz[baseline=(char.base)]{ \node [shape=circle,draw,inner sep=1pt] (char) {#1};}} \begin{document} \begin{tikzpicture} % variables for pn-junction diagram: % all parameters are in tikz scale % p-side of the junction is here on the right \def\V{1.5} % junction polarisation (0=flat band) \def\EG{3} % band gap of semiconductor \def\EF{1.5} % vertical Fermi level position \def\EFn{3.3} % pseudo fermi level for electrons \def\EFp{1.8} % pseudo fermi level for holes \def\DZCE{4} % start position on the left for space charge region (SCR) \def\LZCE{2} % SCR width \def\PN{10} % total lentgh of the junction % calculations \pgfmathsetmacro\EC{\EG+\V};% conduction band heigth (without polarisation) \pgfmathsetmacro\FZCE{\DZCE+\LZCE};% SCR end position % valence and conduction band drawing: \draw (0,0) node [left]{$E_V$} -- (\DZCE,0) to[out=0, in=180, looseness=0.75] (\FZCE,\V) -- (\PN,\V); % EV \draw (0,\EG) node [left] {$E_C$} -- (\DZCE,\EG) to[out=0, in=180, looseness=0.75] (\FZCE,\EC) -- (\PN,\EC); % EC % fermi level drawing (if needed): % \draw [dashed](0,\EF) -- ({\PN-0.5},\EF) node [right]{$E_F$}; % EF % quasi fermi levels drawing (if needed) : \draw [dashed] (0,\EFn) -- (\PN,\EFn) node [right] {$E_{Fn}$}; % EFn for electron \draw [dashed] (0,\EFp) -- ({\PN},\EFp) node [right] {$E_{Fp}$}; % EFp for holes % electric field in SCR drawing : \draw [->] (\DZCE, {\V+\EG+1}) -- node [above] {$\vec{E}_{ZCE}$} (\FZCE, {\V+\EG+1}) ; % E vector % excess carriers \foreach \x in {1,2,...,7} \draw ({\FZCE+1+\x/3},{\EC+0.2}) node {$\bullet$}; % p side : electrons \foreach \x in {1,2,...,7} \draw ({1+\x/3},{-0.2}) node {$\circ$}; % n side : holes % photon injection and carrier generation % p side : carrier generation: \draw [->, loosely dashed] ({\FZCE+3}, \V) -- node [right] {\textcircled{1}}({\FZCE+3}, \EC); % the textcircled{number} option is used in several places % to describe the physical mechanisms. % It can be safely removed if not needed % photon wave injection in the bandgap on p-side : \draw [decorate, decoration={snake}, ->] ({\PN+1},{\EC+1}) -- node [below,sloped]{$h\nu$} ({\FZCE+3}, \EG); % excess carriers diffusion, with diffusion length : % electrons on p side : \draw [->] ({\FZCE+1},{\EC+0.2}) -- node [above] {$L_{Dn}$} node [below=6pt] {\textcircled{2}}({\FZCE},{\EC+0.2}) node [left] {$\bullet$} ; \draw [->] ({\FZCE-0.3},{\EC+0.2}) to [out=200, in=0, looseness=0.75] node [above left] {\textcircled{3}} ({\DZCE},{\EG+0.2}) node [left] {$\bullet$} node [above left=3pt] {\textcircled{4}}; % holes on n side : \draw [->] ({1.2+7/3},{-0.2}) -- node [below] {$L_{Dp}$} ({\DZCE},{-0.2}) node [right]{$\circ$} ; \draw [->] ({\DZCE+0.3},-0.2) to [out=20, in=180, looseness=0.75] ({\FZCE},{\V-0.2}) node [right]{$\circ$}; \end{tikzpicture} \end{document}
Click to download: junction-diagram.tex • junction-diagram.pdf
Open in Overleaf: junction-diagram.tex