

RULE-13 IF (S_{12}) Heat exchanger is ineffective AND (T_{13}) Temperature reading of SW at exit of heat exchanger is low THEN (S_{13}) Fouled heat exchanger and hence poor heat transfer is responsible for overheat	RULE-18 IF (S_{17}) Loss of coolant occurs in SW loop with pump operating AND (T_{18}) Pressure gauge reading of SW is high THEN (S_{18}) SW discharge valve is closed
RULE-14 IF (S_{12}) Heat exchanger is ineffective AND (T_{14}) Temperature reading of SW at exit of heat exchanger is high THEN (S_{14}) Loss of coolant occurs in SW loop	RULE-19 IF (S_{17}) Loss of coolant occurs in SW loop with pump operating AND (T_{19}) Pressure gauge reading at suction valve of SW coolant pump is low THEN (S_{19}) Blocked strainer or closed suction valve of SW coolant pump is responsible for overheat
$S_{14} = \begin{bmatrix} \text{RULE-15} \\ \text{IF } (S_{14}) \text{ Loss of coolant occurs in SW} \\ \text{loop} \\ \text{AND } (T_{15}) \text{ SW control valve is closed} \\ \text{THEN } (S_{15}) \text{ Closed SW control valve is responsible for overheat} \end{bmatrix}$	RULE-20 IF (S_{17}) Loss of coolant occurs in SW loop with pump operating AND (T_{20}) Pressure gauge reading at delivery valve of SW coolant pump is high THEN (S_{20}) Closed delivery valve of SW coolant pump is responsible for overheat
RULE-16 IF (S_{14}) Loss of coolant occurs in SW loop AND (T_{16}) SW coolant pump is not operating THEN (S_{16}) Stoppage in SW coolant pump is responsible for overheat	RULE-21 IF (S_{17}) Loss of Coolant occurs in SW loop with pump operating AND (T_{21}) Ampere meter reading of motor of SW coolant pump is abnormal THEN (S_{21}) Power decrease of motor of SW coolant pump is responsible for overheat RULE-22 IF (S_{17}) Loss of coolant occurs in SW loop with pump operating

AND (T_{17}) SW coolant pump is operat-

THEN (S_{17}) Loss of coolant occurs in

SW loop with pump operating

AND $(T_{22.1})$ Pressure gauge reading at delivery valve of SW coolant pump is low AND $(T_{22.2})$ Pressure gauge reading at suction valve of SW coolant pump is nor-

THEN (S_{22}) Impeller damage in SW

coolant pump is responsible for overheat