An animation of Archimedes's approximation of pi.
Edit and compile if you like:
% % Author: % Efraín Soto Apolinar. % www.aprendematematicas.org % % Animation to explain the approximation % of $\pi$ as Archimedes did. % \documentclass[spanish,10pt]{beamer} \usepackage{color} \usepackage{tikz} \usepackage{animate} \usepackage{calc} %\usepackage{pgfmath} % \usepackage{hyperref} \hypersetup{pdfpagemode=FullScreen} % Beamer Settings \usetheme{Warsaw} % Counters \newcounter{m} % Number of sides of the polygon \setcounter{m}{2} \newcounter{c} % Internal Control Counter % % % \begin{document} % % % \begin{frame}[fragile]{Polygons} \begin{center} \begin{animateinline}[loop, poster = first, controls, palindrome]{25} \whiledo{\them<100}{ \stepcounter{m} \setcounter{c}{0} % \begin{tikzpicture}[rotate=90] \draw[blue,thick] (0,0) circle (3cm); % The polygons [Note: This is NOT the name of a band] \whiledo{\thec<\them}{ \pgfmathparse{\thec*(360.0/\them)} \coordinate (initial) at (\pgfmathresult:3cm); % \pgfmathparse{(\thec+1)*(360.0/\them)} \coordinate (final) at (\pgfmathresult:3cm); % \draw[red,thick] (initial) -- (final); \draw[cyan,thin] (0,0) -- (initial); \stepcounter{c} } \node[blue,above] at (0:3.125cm){$n = $\,\them}; \end{tikzpicture} % \ifthenelse{\them<100}{ \newframe }{ \end{animateinline}\relax % BREAK } } % END \whiledo... % \end{center} \end{frame} % % % \end{document}
Click to download: archimedess-approximation-of-pi.tex • archimedess-approximation-of-pi.pdf
Open in Overleaf: archimedess-approximation-of-pi.tex